导出类型

 

Nutr Diabetes 2015 ;5 e178. 全文索取
Differential expression of hypothalamic, metabolic and inflammatory genes in response to short-term calorie restriction in juvenile obese- and lean-prone JCR rats.

Abstract
Childhood obesity is an important early predictor of adult obesity and associated comorbidities. Common forms of obesity are underpinned by both environmental and genetic factors. However, the rising prevalence of obesity in genetically stable populations strongly suggests that contemporary lifestyle is a premier factor to the disease. In pediatric population, the current treatment/prevention options for obesity are lifestyle interventions such as caloric restriction (CR) and increase physical activity. In obese individuals, CR improves many metabolic parameters in peripheral tissues. Little is known about the effect of CR on the hypothalamus. This study aimed to assess the effect of CR on hypothalamic metabolic gene expression of young obese- and lean-prone animals. Male juvenile JCR:LA-cp obese-prone rats were freely fed (Obese-FF) or pair fed (Obese-FR) to lean-prone, free-feeding animals (Lean-FF). A group of lean-prone rats (Lean-FR) were matched for relative average degree of CR to Obese-FR rats. In free-feeding conditions, obese-prone rats consumed more energy than lean-prone rats (P<0.001) and showed greater increases in body weight, fat mass, plasma glucose, insulin and lipids (P<0.01). These metabolic differences were associated with alterations of feeding-related neuropeptides expression in the hypothalamus, as well as pro-inflammatory cytokines and oxidative stress markers. When submitted to the same degree of CR, the two genotypes responded differently; hypothalamic inflammatory and oxidative stress gene expression was improved in Obese-FR, while it was worsened in Lean-FR rats. We demonstrate in JCR rats that the metabolic and inflammatory response of the brain to CR is genotype dependent.

PMID: 26302065 [Pubmed - PubMed-not-MEDLINE]

  • Full Text Sources

关联文献

  • 加载中....

检索记录[清空]